Search results for "VOLATILE PHENOL"

showing 8 items of 8 documents

Partial vinylphenol reductase purification and characterization from Brettanomyces bruxellensis

2008

International audience; Brettanomyces is the major microbial cause for wine spoilage worldwide and causes significant economic losses. The reasons are the production of ethylphenols that lead to an unpleasant taint described as 'phenolic odour'. Despite its economic importance, Brettanomyces has remained poorly studied at the metabolic level. The origin of the ethylphenol results from the conversion of vinylphenols in ethylphenol by Brettanomyces hydroxycinnamate decarboxylase. However, no information is available on the vinylphenol reductase responsible for the conversion of vinylphenols in ethylphenols. In this study, a vinylphenol reductase was partially purified from Brettanomyces bruxe…

Chromatography GasBrettanomycesMolecular Sequence DataVINYLPHENOL REDUCTASEBrettanomyces bruxellensisWineReductaseMicrobiology[ CHIM ] Chemical SciencesFungal Proteins03 medical and health sciencesHydrolysisOpen Reading FramesPhenolsOxidoreductaseGenetics[CHIM]Chemical SciencesAmino Acid SequenceMolecular Biology030304 developmental biologychemistry.chemical_classificationWineVOLATILE PHENOL0303 health sciencesbiology030306 microbiologyChemistryGuaiacolTemperatureBRETTANOMYCESHydrogen-Ion Concentrationbiology.organism_classificationNADAmino acidMolecular WeightKineticsEnzymeBiochemistryDETERIORATION MICROBIENNESaccharomycetalesBRUTTANOMYCES BRUXELLENSISFood MicrobiologyElectrophoresis Polyacrylamide GelOxidoreductases
researchProduct

Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomi…

2016

International audience; The spoilage potential of Brettanomyces bruxellensis in wine is strongly connected with the aptitude of this yeast to enter in a Viable But Non Culturable (VBNC) state when exposed to the harsh wine conditions. In this work, we characterized the VBNC behaviour of seven strains of B. bruxellensis representing a regional intraspecific biodiversity, reporting conclusive evidence for the assessment of VBNC as a strain-dependent character. The VBNC behaviour was monitored by fluorescein diacetate staining/flow cytometry for eleven days after addition of 0.4, 0.6, 0.8, 1 and 1.2 mg/L of molecular SO2 (entrance in the VBNC state) and after SO2 removal (exit from the VBNC st…

0301 basic medicine[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionColony Count MicrobialExpressionSaccharomyces-cerevisiaeTranscriptometranscriptomicsHomeostasisSulfur DioxideHeat-Shock Proteinsmedicine.diagnostic_testViabilityCarbohydrate MetabolismOxidation-ReductionVolatile phenol production030106 microbiologyBrettanomyces bruxellensisBrettanomycesBiologyFlow cytometryMicrobiology03 medical and health sciencesPhenolsHeat shock proteinsulphitemedicineSulfiteswineGeneRna-seqBrettanomyces; spoilage; sulphite; transcriptomics; Viable But Not Culturable (VBNC); wine; food science; microbiologyWineMicrobial ViabilityGene Expression ProfilingspoilagemicrobiologyDNA replicationNonculturable bacteriabiology.organism_classificationCampylobacter-jejuniSulfur-dioxideYeastYeastCulture MediaOxidative StressFood MicrobiologyViable But Not Culturable (VBNC)food science[SDV.AEN]Life Sciences [q-bio]/Food and NutritionSettore AGR/16 - Microbiologia Agraria
researchProduct

Transfer of volatile phenols at oak wood/wine interface in a model system

2006

Abstract In order to assess the influence of wood on the concentration of aroma compounds during ageing of wine, the transfer of volatile phenols including 4-ethylphenol, eugenol and a homologous series of guaiacols from wine to oak wood were studied in a model system at 10°C. At equilibrium most of the volatile phenols adsorbed in the wood. The results display that the amounts adsorbed depend on the nature of the volatile phenols and the botanical origin of oak wood.

WineEugenolchemistry.chemical_compoundbiologyChemistryVolatile phenolsOrganic chemistryModel systemPulp and paper industrybiology.organism_classificationAroma
researchProduct

Spoilage potential of Brettanomyces bruxellensis strains isolated from Italian wines

2018

Abstract Brettanomyces bruxellensis is an important wine spoilage agent. In this study a population of Brettanomyces strains isolated from Italian wines was thoroughly investigated to evaluate adaptability to wine conditions and spoilage potential. The presumptive isolates of Brettanomyces were identified at species level with 26S rRNA gene sequencing and species-specific PCR, and subsequently subjected to analysis of intra-species variability through the study of intron splice sites (ISS-PCR). Although, some strains were tracked in wines from different regions, extensive genetic biodiversity was observed within the B. bruxellensis population investigated. All strains were evaluated for the…

0106 biological sciences0301 basic medicineStrain resistanceGenotypeBrettanomyces030106 microbiologyPopulationFood spoilageBrettanomyces bruxellensisBrettanomycesVolatile phenolsWineWine spoilageMicrobial contaminationRibotyping01 natural sciences03 medical and health sciencesVolatile phenolPhenolsSpecies level010608 biotechnologyBrettanomyceFood scienceDNA FungaleducationYeast physiologyPhylogenyWineVolatile Organic Compoundseducation.field_of_studyGenetic diversitybiologydigestive oral and skin physiologyfood and beveragesbiology.organism_classificationItalySettore AGR/16 - MICROBIOLOGIA AGRARIAFood MicrobiologyFood Science
researchProduct

Sensory-active compounds influencing wine experts' and consumers' perception of red wine intrinsic quality

2015

© 2014 Elsevier Ltd. There is a lack of studies focusing on the chemical compounds involved in quality perception. The present work combines both sensory and chemical approaches with the final goal of evaluating the sensory-active compounds influencing wine experts' and consumers' perception of red wine quality. Perceived quality was categorised by 108 consumers and 119 experts according to four levels going from very low to very high quality. In parallel, samples were described by a descriptive trained panel and volatile and non-volatile chemicals with known sensory activity were quantified. Wines with higher concentrations of eugenol, E- and Z-whiskylactones and 4-ethylphenol (discussed i…

Fusel alcoholWine[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionmedia_common.quotation_subjectVolatile phenols[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringVolatilefood and beveragesWineSensory systemNon-volatileNorisoprenoidsQualitySensory activityPerception[SDV.IDA]Life Sciences [q-bio]/Food engineeringQuality (business)Food scienceBusiness[SDV.AEN]Life Sciences [q-bio]/Food and NutritionFood Sciencemedia_commonWine industryLWT - Food Science and Technology
researchProduct

Characterization of the "viable but nonculturable" (VBNC) state in the wine spoilage yeast Brettanomyces.

2012

Although the viable but not culturable (VBNC) state has been studied in detail in bacteria, it has been suggested that maintenance of viability with loss of culturability also exists in eukaryotic cells, such as in the wine spoilage yeast Brettanomyces. To provide conclusive evidence for the existence of a VBNC state in this yeast, we investigated its capacity to become viable and nonculturable after sulfite stress, and its ability to recover culturability after stressor removal. Sulfite addition induced loss of culturability but maintenance of viability. Increasing the medium pH to decrease the concentration of toxic SO(2) allowed yeast cells to become culturable again, thus demonstrating …

volatile phenol[SDV.SA]Life Sciences [q-bio]/Agricultural sciencessynthetic wineBrettanomycesFood spoilageviable but nonculturableBrettanomyces bruxellensisBrettanomycesWineyeastMicrobiologyViable but nonculturableMicrobiology03 medical and health sciencesSulfur DioxideFood scienceproteomic030304 developmental biologyWine0303 health sciencesbiology030306 microbiologyflow cytometrybiology.organism_classificationYeastCulture MediaYeast in winemakingBrettanomyces bruxellensisBacteriaFood ScienceFood microbiology
researchProduct

Intraspecific biodiversity and 'spoilage potential' of Brettanomyces bruxellensis in Apulian wines

2015

Abstract The yeast Brettanomyces bruxellensis, generally considered the main oenological spoilage microbe, is able to survive during the winemaking process and it confers off-odors to wine, in reason of its ability to produce considerable amounts of volatile phenols. Forty-eight isolates of B. bruxellensis, obtained from several wines collected in Apulia (Southern Italy), were genetically characterized using an integrated approach, including a strain biodiversity analysis by Sau-PCR. Furthermore, the production of volatile phenols was assessed in wine and in synthetic medium, confirming the oenological spoilage potential of the analysed strains. Our findings indicate a remarkable genetic va…

WineFood spoilageBiodiversityBrettanomyces bruxellensisfood and beveragesBiologybiology.organism_classificationYeastIntraspecific competitionBotanyGenetic variabilityBrettanomyces bruxellensis; Wine; Sau-PCR; Biodiversity; Volatile phenolsFood ScienceWinemaking
researchProduct

Use of autochthonous yeasts and bacteria in order to control Brettanomyces bruxellensis in wine

2017

Biocontrol strategies for the limitation of undesired microbial developments in foods and beverages represent a keystone toward the goal of more sustainable food systems. Brettanomyces bruxellensis is a wine spoilage microorganism that produces several compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols. To control the proliferation of this yeast, sulfur dioxide is commonly employed, but the efficiency of this compound depends on the B. bruxellensis strain; and it is subject to wine composition and may induce the entrance in a viable, but nonculturable state of yeasts. Moreover, it can also elicit allergic reactions in humans. …

0301 basic medicineMicroorganism030106 microbiologyFood spoilageVolatile phenolsBrettanomyces bruxellensisWineSaccharomyces cerevisiaePlant ScienceBiochemistry Genetics and Molecular Biology (miscellaneous)Aliments Microbiologia03 medical and health sciencesMalolactic fermentationFood scienceNon- SaccharomycesOenologyOenococcus oeniWinelcsh:TP500-660non-Saccharomycesbiology<i>Brettanomyces bruxellensis</i>; volatile phenols; biocontrol; <i>Saccharomyces cerevisiae</i>; non-<i>Saccharomyces</i>; <i>Oenococcus oeni</i>; wineBiocontrolfood and beverageslcsh:Fermentation industries. Beverages. Alcoholbiology.organism_classificationYeastBrettanomyces bruxellensisViniculturaBiocontrol; Brettanomyces bruxellensis; Non- Saccharomyces; Oenococcus oeni; Saccharomyces cerevisiae; Volatile phenols; WineOenococcus oeniSettore AGR/16 - Microbiologia AgrariaFood Science
researchProduct